正在阅读:

单足机器人掌握“花式”跳跃技巧:能跳到指定位置,还能平稳落地

扫一扫下载界面新闻APP

单足机器人掌握“花式”跳跃技巧:能跳到指定位置,还能平稳落地

加州大学伯克利分校的研究团队设计出一款跳跃机器人,能够较精准地跳到指定位置,平均误差仅有1.6cm。

文|智东西记者 董温淑

智东西6月2日消息,2016年,加州大学伯克利分校的一支研究团队研发出一款跳跃机器人Salto。过去4年中,该团队一直致力于提升Salto机器人的性能。

通过之前的研究,Salto实现了连续跳跃、从障碍物表面反弹跳跃、在户外跳跃的能力。但是,Salto跳跃到指定位置的准确性和着陆时的平衡性还有所欠缺,这导致其难以跨越障碍物。

研究团队的最新研究尝试解决这一问题。在近日举办的ICRA 2020会议上,加州大学伯克利分校的研究团队介绍了最新款机器人模型Salto-1P。Salto-1P可以用单足精准地跳跃到一个狭窄的支架上,着陆时能保持较好的平衡性。数据显示,相比于之前的Salto机器人,Salto-1P跳跃水平距离的标准差从9.2cm下降到1.6cm。在另一项测试中,研究人员进行了60次实验,Salto-1P只有3次偏离了目标位置。

ICRA 2020是机器人技术领域最具影响力的国际会议之一,由IEEE机器人与自动化协会举办。本项研究发表在学术网站IEEE Xplore上,论文标题为《用姿态-相平衡实现精确的机器人跳跃和着陆(Precision Robotic Leaping and Landing Using Stance-phase Balance )》。

论文链接:https://ieeexplore.ieee.org/abstract/document/9016133

用基于角动量的控制器设置机器人落地角度

论文分析了现有的从静态开始跳跃的机器人、跑步机器人、多自由度机器人。通过这项工作,研究人员发现了这些解决方案存在的问题。

初始状态为静态的机器人在跳跃之前,一般会进行稳定的助跑,以瞄准目标位置。这种方式可以提升机器人跳跃到指定位置的准确性,但是无法控制机器人的着陆姿势。因此,每完成一次跳跃,机器人可能需要研究人员进行一次扶正动作。

跑步机器人一般采用弹簧加载反摆模型(SLIP,Spring Loaded Inverted Pendulum),能够将跳跃动作融合到步态中,但是无法设置着陆、停止跑动时的姿势。

具有多自由度的四足或六足机器人能够完成跨越障碍和翻转等动作,但是,这类机器人一般只能在较平坦、广阔的位置着陆,而不能在狭窄的区域着陆。

本项研究中,研究人员尝试用基于角动量的倾斜控制器来提升跳跃机器人跳跃到指定位置的准确性和着陆时的平衡性。

研究人员发现,当机器人以一定的角度着陆时,他们的落地动作会产生大量的角动量。这种情况下,机器人的着陆角度必须十分精确,否则就无法保持平衡。比如,如果要从1米高的地方平稳落地,机器人的着陆角度需要控制在2.3度左右。基于角动量的倾斜控制器可以精准控制机器人的着陆角度,帮助机器人平稳着陆到指定位置。

Salto-1P:体长0.313米的点足机器人

研究人员将基于角动量的倾斜控制器用于单足机器人Salto-1P。Salto-1P的主要组成部分有推进器(Thrusters)、座驾(chassis)、反冲式叶轮(reaction wheel)、腿部电动机(leg motor)、足部等。

Salto-1P采用点足(point foot),同时腿部设置有两个“脚趾”。研究人员称,当Salto-1P蹲下时,其腿部的两个“脚趾”能够接触到地面,这可以增大机器人着陆时的力矩、使机器人着陆更加平稳。

▲Salto-1P示意图

Salto-1P体长约为0.313米,质量为0.111千克。

▲Salto-1P参数表

研究人员用机载编码器和陀螺仪来测量重心位移、起跳速度等运动参数。测量水平速度的误差标准差为0.1m/s。

为了更加可靠地评估学习控制、腿部控制和着陆策略的可靠性,研究人员增加了一个运动捕捉系统,用其测量机器人跳跃运动的水平距离等参数。

共进行70次实验,机器人基本上能在目标位置着陆

机器人部署好后,研究人员进行实验,评估了机器人在不同条件下跳跃到指定位置的准确性。实验中,研究人员用无线电以100Hz的频率向机器人发送指令。

首先,研究人员规定机器人的起跳角度和腿部运动速度。研究人员将机器人起跳角度限制在0.218rad±75%,设置3种腿部运动速度,分别为1.88m/s、2.88m/s、3.88m/s。

在不同的起跳角度和腿部运动速度组合下,研究人员共进行了60次实验,在这些实验中,机器人的起跳角度误差的标准差为0.023rad、水平速度平均误差为0.041m/s、垂直速度平均误差为-0.048m/s。60次实验中,机器人有57次成功在目标位置着陆。

▲红色点表示机器人未能在目标位置着陆

接下来,研究人员规定机器人的跳跃轨迹,不设置起跳角度。根据论文,设置机器人的跳跃最高点比起跳点高0.571m(正好是两倍机器人体长),水平位移为32.6cm。机器人跳跃时的加速度被规定为30rad/s2、跳跃时间为0.07s、水平速度为3.38m/s。在未经调整的情况下,机器人的起跳角度为0.166rad(调整后起跳角度为0.147rad)。

研究人员使机器人在起跳角度为0.166rad的情况下进行10次跳跃,并记录其起跳轨迹。下图中,蓝色线条代表参考轨迹,灰色线条为机器人起跳轨迹,红色线条表示起跳角度调整为0.147rad后机器人的起跳轨迹。

▲Salto-1P的起跳轨迹图

测量结果显示,机器人跳跃的平均水平距离为35.1cm,标准差为1.6cm。相比之下,之前的Salto机器人跳跃的平均水平距离标准差为9.2cm。

▲Salto-1P的跳跃轨迹图

结语:未来机器人或能在柔软、光滑表面上着陆

从2016年以来,加州大学伯克利分校的一支研究团队致力于不断改善跳跃机器人Salto的性能。本项研究中,研究人员通过部署一个基于角动量的倾斜控制器,使机器人能够较精准地跳跃到指定的位置。

论文还指出,当机器人进行连续跳跃动作时,能够在面积更小的目标物上着陆。另外,为了使Salto机器人能够获得实际应用,研究人员将在未来进行更多探索。比如,研究人员将尝试使机器人在柔软或光滑表面上着陆。

文章来源:IEEE Spectrum、IEEE Xplore

本文为转载内容,授权事宜请联系原著作权人。

评论

暂无评论哦,快来评价一下吧!

下载界面新闻

微信公众号

微博

单足机器人掌握“花式”跳跃技巧:能跳到指定位置,还能平稳落地

加州大学伯克利分校的研究团队设计出一款跳跃机器人,能够较精准地跳到指定位置,平均误差仅有1.6cm。

文|智东西记者 董温淑

智东西6月2日消息,2016年,加州大学伯克利分校的一支研究团队研发出一款跳跃机器人Salto。过去4年中,该团队一直致力于提升Salto机器人的性能。

通过之前的研究,Salto实现了连续跳跃、从障碍物表面反弹跳跃、在户外跳跃的能力。但是,Salto跳跃到指定位置的准确性和着陆时的平衡性还有所欠缺,这导致其难以跨越障碍物。

研究团队的最新研究尝试解决这一问题。在近日举办的ICRA 2020会议上,加州大学伯克利分校的研究团队介绍了最新款机器人模型Salto-1P。Salto-1P可以用单足精准地跳跃到一个狭窄的支架上,着陆时能保持较好的平衡性。数据显示,相比于之前的Salto机器人,Salto-1P跳跃水平距离的标准差从9.2cm下降到1.6cm。在另一项测试中,研究人员进行了60次实验,Salto-1P只有3次偏离了目标位置。

ICRA 2020是机器人技术领域最具影响力的国际会议之一,由IEEE机器人与自动化协会举办。本项研究发表在学术网站IEEE Xplore上,论文标题为《用姿态-相平衡实现精确的机器人跳跃和着陆(Precision Robotic Leaping and Landing Using Stance-phase Balance )》。

论文链接:https://ieeexplore.ieee.org/abstract/document/9016133

用基于角动量的控制器设置机器人落地角度

论文分析了现有的从静态开始跳跃的机器人、跑步机器人、多自由度机器人。通过这项工作,研究人员发现了这些解决方案存在的问题。

初始状态为静态的机器人在跳跃之前,一般会进行稳定的助跑,以瞄准目标位置。这种方式可以提升机器人跳跃到指定位置的准确性,但是无法控制机器人的着陆姿势。因此,每完成一次跳跃,机器人可能需要研究人员进行一次扶正动作。

跑步机器人一般采用弹簧加载反摆模型(SLIP,Spring Loaded Inverted Pendulum),能够将跳跃动作融合到步态中,但是无法设置着陆、停止跑动时的姿势。

具有多自由度的四足或六足机器人能够完成跨越障碍和翻转等动作,但是,这类机器人一般只能在较平坦、广阔的位置着陆,而不能在狭窄的区域着陆。

本项研究中,研究人员尝试用基于角动量的倾斜控制器来提升跳跃机器人跳跃到指定位置的准确性和着陆时的平衡性。

研究人员发现,当机器人以一定的角度着陆时,他们的落地动作会产生大量的角动量。这种情况下,机器人的着陆角度必须十分精确,否则就无法保持平衡。比如,如果要从1米高的地方平稳落地,机器人的着陆角度需要控制在2.3度左右。基于角动量的倾斜控制器可以精准控制机器人的着陆角度,帮助机器人平稳着陆到指定位置。

Salto-1P:体长0.313米的点足机器人

研究人员将基于角动量的倾斜控制器用于单足机器人Salto-1P。Salto-1P的主要组成部分有推进器(Thrusters)、座驾(chassis)、反冲式叶轮(reaction wheel)、腿部电动机(leg motor)、足部等。

Salto-1P采用点足(point foot),同时腿部设置有两个“脚趾”。研究人员称,当Salto-1P蹲下时,其腿部的两个“脚趾”能够接触到地面,这可以增大机器人着陆时的力矩、使机器人着陆更加平稳。

▲Salto-1P示意图

Salto-1P体长约为0.313米,质量为0.111千克。

▲Salto-1P参数表

研究人员用机载编码器和陀螺仪来测量重心位移、起跳速度等运动参数。测量水平速度的误差标准差为0.1m/s。

为了更加可靠地评估学习控制、腿部控制和着陆策略的可靠性,研究人员增加了一个运动捕捉系统,用其测量机器人跳跃运动的水平距离等参数。

共进行70次实验,机器人基本上能在目标位置着陆

机器人部署好后,研究人员进行实验,评估了机器人在不同条件下跳跃到指定位置的准确性。实验中,研究人员用无线电以100Hz的频率向机器人发送指令。

首先,研究人员规定机器人的起跳角度和腿部运动速度。研究人员将机器人起跳角度限制在0.218rad±75%,设置3种腿部运动速度,分别为1.88m/s、2.88m/s、3.88m/s。

在不同的起跳角度和腿部运动速度组合下,研究人员共进行了60次实验,在这些实验中,机器人的起跳角度误差的标准差为0.023rad、水平速度平均误差为0.041m/s、垂直速度平均误差为-0.048m/s。60次实验中,机器人有57次成功在目标位置着陆。

▲红色点表示机器人未能在目标位置着陆

接下来,研究人员规定机器人的跳跃轨迹,不设置起跳角度。根据论文,设置机器人的跳跃最高点比起跳点高0.571m(正好是两倍机器人体长),水平位移为32.6cm。机器人跳跃时的加速度被规定为30rad/s2、跳跃时间为0.07s、水平速度为3.38m/s。在未经调整的情况下,机器人的起跳角度为0.166rad(调整后起跳角度为0.147rad)。

研究人员使机器人在起跳角度为0.166rad的情况下进行10次跳跃,并记录其起跳轨迹。下图中,蓝色线条代表参考轨迹,灰色线条为机器人起跳轨迹,红色线条表示起跳角度调整为0.147rad后机器人的起跳轨迹。

▲Salto-1P的起跳轨迹图

测量结果显示,机器人跳跃的平均水平距离为35.1cm,标准差为1.6cm。相比之下,之前的Salto机器人跳跃的平均水平距离标准差为9.2cm。

▲Salto-1P的跳跃轨迹图

结语:未来机器人或能在柔软、光滑表面上着陆

从2016年以来,加州大学伯克利分校的一支研究团队致力于不断改善跳跃机器人Salto的性能。本项研究中,研究人员通过部署一个基于角动量的倾斜控制器,使机器人能够较精准地跳跃到指定的位置。

论文还指出,当机器人进行连续跳跃动作时,能够在面积更小的目标物上着陆。另外,为了使Salto机器人能够获得实际应用,研究人员将在未来进行更多探索。比如,研究人员将尝试使机器人在柔软或光滑表面上着陆。

文章来源:IEEE Spectrum、IEEE Xplore

本文为转载内容,授权事宜请联系原著作权人。